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Outline:

* Formulation and history of the problem
* Results for fermionic system
 Effective model

Techmgoe
 Stability of the metal
« Stability of the many-body insulator

* Metal insulator transition
« Extension for weakly interacting bosons in 1D.



Problem: can e-e interaction alone
sustain finite conductivity
In a localized system?

Given: 1. Allone-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity o7, w=0)
(zero or finite?)




1. Localization of single-electron wave-functions:
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Most of the knowledge is based on extensions and
Improvements of:
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Absence of Diffusion in Certain Random Lattices

P, W, ANDERSON
Bell Taepbone Loboratories, Wwrray il New Sersey
{Received October 10, 1937)

This paper presents a simple mocel for such processes as spin dffusion of conduction In the “impurity
band.” ‘These processes mvalve trnspart in a lattice which 15 in some sense random, and in them difusion
& expected to take place via quantum jumps between localzed sites, In (his simple model the esemtial
randomness is introduced by requiring the energy to vary randemly from site to site. It s shown that at low
enough densties no diffusion at all can take place, and the criterin for transport o ootur are _|_.',;i'.-EIt.



1. Localization of single-electron wave-functions:
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d=1: All states are localized

Exact solution for one channel:
M.E. Gertsenshtein, V.B. Vasil’ev, (1959)

“Conjecture” for one channel:

Sir N.F. Mott and W.D. Twose (1961)

Exact solution for () for one channel:
V.L. Berezinskii, (1973)

"’—A—\N‘\ Cloc
Y “1) /\[\/\/\ /\{\ /\,\ /\/\ AT - ) Scaling argument for multi-channel :

D.J. Thouless, (1977)
Exact solutions for multi-channel:

K.B.Efetoy, A.l. Larkin (1983)
O.N. Dorokhov (1983)



1. Localization of single-electron wave-functions:
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extended

localized

d=1: All states are localized

d=2: All states are localized
If no spin-orbit interaction

Thouless scaling + ansatz:

E. Abrahams, P. W. Anderson, D. C.
Licciardello, and T.V. Ramakrishnan, (1979)

Instability of metal with respect to quantum

(weak localization) corrections:
L.P. Gorkov, A.l.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:
A Maccinnon, B. Kramer, (1981)



Instability of 2D metal with respect to quantum

(weak localization) corrections:
L.P. Gorkov, A.l.Larkin, D.E. Khmelnitskii, (1979)
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“All states are /ocalized *
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Probability to find an extended state:
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1. Localization of single-electron wave-functions:
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d=1: All states are localized

d=2: All states are localized

d>2: Anderson transition




Anderson * Lattice - tight binding model
MOdel e Onsite energies £; - random

 Hopping matrix elements I i

I Il and ] are nearest
neighbors

O otherwise Critical hopping:

1. N 1 1
-W<g<W w — \2d) \Ind
uniformly distributed

d>3>1




Anderson Transition

I1>1 I <1

C C

1‘ € Coexistence of the localized and
extended states is not possible!!!

} all states are

..
ended

\\&gééé .......

E .. - mobility edges (one particle)



Temperature dependence of the
conductivity (1)

Assume that all the states
are localized

y /‘?




Inelastic processes )
transitions between localized states

___ — =8 | energy
O, a e €r 87 5% mismatch

o(T) x o (inelastic lifetime)

T=0 = oc=0 (any mechanism)

T>0 = o=7




Phonon-induced hopping

Sir N.F-Mott (1T9638)

1
Vari%b@ﬁmy@ff%ppmgcag (T) < 77 exp | — 5C> d+1

Mechanism-dependent
prefactor

T

Optimized
phase volume
.

Withou mb gap
A.L.Ef .

J/

Any bath with a continuous spectrum of delocalized
excitations down to w= 0 will give the same exponential




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure
Easy steps:  Person from the street (2005)

1) Recall phonon-less AC conductivity:
Sir N.F. Mott (1970) 5 od—9

h 2
U(w) ~ c ;{)C (g:) [ndt1

2) Calculate the Nyquist noise
(fluctuation dissipation Theorem).

O¢

hw

3) Use the electric noise instead of phonons.

4) Do self-consistency (whatever it means).



Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure [Person from the street (2005)]

A#2: No way [L. Fleishman. P.W. Anderson (1980)]
arLoulamb-intaraatios =9y be)




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure [Person from the street (2005)]
A#2: No way |[L. Fleishman. P.W. Anderson (1980)]

A#3: Finite T Metal-Insulator Transition

o(T)]

[Basko, Aleiner, Altshuler (2005)]

Drude

>

AL

< metal
<—nsulator—

(Perfect Ins) Interaction strength
oL
=T(F) = —
I'=T(E)= 53

>

O¢ T




Man y—body mobility threshold
Hl =+ Hznt o — goz\Ijoz

[Basko, Aleiner, Altshuler (2005)]
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“All states are /ocalized *

means
Probabillity to find an extended state:
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Localized one-body wave-function

Means, in particular:
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We define localized many-body wave-function as:
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Is it similar to Anderson transition?

Why no activation?
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—0 Physics: Many-body excitations turn out
~ 7 to be localized in the Fock space

VOLUME 78, NUMBER 14 PHY SITCAL REVIEW LETTERS T APRIL 997

Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach

Boris .. Altshuler,' Yuval Gefen,? Alex Kamenev.® and Leonid S. Levitov’
\NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
* Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
I Massachusetts Institute of Technology, 12-112, Cambridee, Massachusetts (12139
{Recerved 30 August 1996)

The problem of electron-electron lifetime in a quantum dot 15 studied bevond perturbation theor

by mapping onto the problem of localizanon in the Fock space. Localized and delocalized regimes

are 1dentified. corresponding (o quasiparticle spectral peaks of zero and hnite width, respectively.
In the localized regime. quasiparticle states are single-particle-like.  In the delocalized regime. each
clgenstate 15 a superposition of states with very different quasiparticle content. The transition energy 12
€. = Alg/Ing)?, where A is mean level spacing. and g is the dimensionless conductance. Near €,
there 1s a broad critical region not described by the golden rule.  [SO031-9007(97 02 805-0]



DRIV, ice - ti ndi
Anderson 0666 ﬁattz.c"e tzghf bm:hng model
Model In fact, I,j can be states
in any space (not necessarily
coordinate)
Critical hopping: I
Interpretation:

I, ( 1 )
— | — W - maximal energy mismatch;
4 2d 2 d — number of coupled neighbors;

dz3>1 (connectivity)

At I>1, there will be always level mismatched
from given b o
givenby o, —ci| <1

and the resonance transport will occur



Fock space localization in quantum dots (AGKL, 1997)

No spatial structure
( “O-dimensional” )

oL D (£)ehehis s
a0
£ -Random matrix theory

01 = <§ atl — 5 a> - one-particle level spacing;



Fock space localization in quantum dots (AGKL, 1997)
H=Y &cléa+. ...+ A0 D ()l che, s
@87

a3v0
1-particle 3-particle S-particle
excitation excitation excitation
Sa — & +&—-8& — L1+ tE&3—864—E65...
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1 1 O 1
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Cayley tree mapping



Fock space localization in quantum dots (AGKL, 1997)

1-particle 3-particle S-particle
excitation excitation excitation
§a — & +&—-8&3 — S1t+&tE&3—864—65...
A0 1 Y] 1 A0 1
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lz W — 51 ,
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01

0 | - one-particle level spacing;




Metal-Insulator “Transition” in zero dimensions

2 [Altshuler, Gefen, Kamenev,Levitov (1997)]
— — €
0 A Inthe paper: | - | ~ —In—
1 pap ( 5 ) Y

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]
o(T)
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Metal-Insulator “Transition” in zero dimensions
(TC > 2 1 [Altshuler, Gefen, Kamenev,Levitov (1997)]

51

= 0 1 - one-particle level spacing;

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]

0 ¢ 6 1-particle level spacing in
T, ~ —> ¢ localizati .
C — \ localization volume,

o | 01 — O¢ |
1) Localization in Fock space |~

= Localization in the coordinate space.
2) Interaction is local;




Metal-Insulator “Transition” in zero dimensions
(TC > 2 1 [Altshuler, Gefen, Kamenev,Levitov (1997)]

51

= 0 1 - one-particle level spacing;

Vs. finite T Metal-Insulator Transition in the bulk systems
[Basko, Aleiner, Altshuler (2005)]

0 ¢ 6 1-particle level spacing in
T, ~ —> ¢ localizati .
C — \ localization volume,

1,2) Locality: 01 — 0¢

3) Interaction matrix elements

6 — (6@ ()~ (@)




Effective Hamiltonian for MIT.

We would like to describe the low-temperature
regime only.

Spatial scales of interest >>

loc

1-particle localization
length

Otherwise, conventional perturbation theory for
disordered metals works.

Altshuler, Aronov, Lee (1979); Finkelshtein (1983) — T-dependent SC potential
Altshuler, Aronov, Khmelnitskii (1982) — inelastic processes



Details: Seminar #1
December 26
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Reproducés correct behavior bf the
talls of one partlcle wavefunctlons
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Interaction only within the same cell;



l1l27172;p

Statistics of matrix elements?
Energy transfer w > o,

corresponds to the special scale L, = /D /w < (.
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s e G R 2)-@1%)

random
signs
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2 VA

Ensemble averaging over: fl ( ,0); O'g — 41

Level repulsion: Only within one cell.
Probability to find 72 levels in the energy interval of the width [

P(n.E)=2- g(E} exp —F[M ] im 20D _

n' 54/ E x—o  x




What to calculate?

|dea for one particle localization Anderson, (1958);
MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);
Critical behavior: Efetov (1987)

T'o(€) = Im X2 (e) —random quantity
. Fa(e) =n — +0

Metal 1'o(€) Insulator 1'o(€)

| 1 | 1
77” ) |

My

My



What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
T'o(€) = Im X2 (e) —random quantity
. Fa(e) =n — +0

Metal 1'o(€) Insulator 1'o(¢€)
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What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
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. Fa(e) =n — +0

Metal 1'o(€) Insulator 1'o(¢€)

A A

ol N

il M\[JMW\A 14 \MAJ | "

My



What to calculate?

|dea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);

Critical behavior: Efetov (1987)
T'o(€) = Im X2 (e) —random quantity
. Fa(e) =n — +0
Metal I'o(€) Insulator T'a(€)
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What to calculate?

|dea for one particle localization Anderson, (1958);
MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);
Critical behavior: Efetov (1987)

T'o(€) = Im ¥/ (¢) —random quantity
No interaction: T',(¢) =n — +0

A Foz(e) TP(F)

metal

insulator

insulator

= v

€

~ 1M
behavior for a probability distribution
given realization for a fixed energy



Probability Distribution

Note: (I') = (')

Look for:

> 0; metal

n—-+0YV—o0

lim lim P(I' > 0) =
0; wnsulator



How to calculate?

non-equilibrium (arbitrary occupations) — Keldysh

’ (s}
_ allow to select the most

1 relevant series
<

(a) ;

. :"' 3

Find the distribution fﬁnction of each
SCBA diagram
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Ilterations:

Cayley tree structure



Nonlinear integral equation withcoefficients

02

after standard simple tricks: | Decay due to tunneling ]

Li(e) = Tf () + 0{" () o

Fgel)

~7I%62) Ay (e,pta)] Decay due to e-h pair creation
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{14y ()i (e2) = mug(€0) [y (1) + iy (e2)]
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+ kinetic equation for occupation function 71| (E)




Stability of metallic phase

Assume 1';,(¢) is Gaussian:
X
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“Non-ergodic” metal [discussed first in AGKL,97]

o 9% T
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Drude metal |
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Kinetic Coefficients in Metallic Phase

B 2W€2]2C2_d

loc
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Kinetic Coefficients in Metallic Phase
Wiedemann-Frantz law ?

,
1+ 0.3 (5;7;“) . T>> \/5.Tu,

= =3
L 20(T\T
o mold) 192G2
T ~ 1.65 ,T<<\/(5¢Teg.
(b) 2:. ...............
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:i Id
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0.5:-5
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Tz’n T/65,T,)



So far, we have learned:

AJ(T) I:':Ion—ergod|C+Drude metal
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Trouble !l
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Stability of the insulator

Nonlinear integral equation witcoefficients

Iy(e) = T8 (&) + 1™ () + 1,

I (e, p) = 71202 > Ay (e,p 1 a);

l1,a

I (o) =na262 Y v / derdeades Ay, (€1) A, (€2) Ay (€3)3 (€ — €1 — €2 + €3) Fi gy, (€1, €25 €8);

I1,d9,l3

Fg(e)

Aj(e) = ——
O + P

Notice: I'(¢) = 0; for n =0 is a solution

Linearization:

Aj(e) = 6(e — &) - Li(e)

(€ —&)7




# of interactions # of hops in space

b= Z Fn}mP(F"’*’m) = \/W T exp (—Wm)

72,1 Trm)? L.

Recall: o n( r ) "

A P(T) e
)
metal B C
. insulator le = 12AM | In \| 1+ O MM I)
n — © T '<T,. staBLE
bility distributi
probability distribution T > TC unstable

for a fixed energy



So, we have just learned:

A

Non-ergodic+Drude metal
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Extension to non-degenerate system

1. > ep

A b ap A\ 2
H;,= 1 /dd'r': (z/ﬂLw) ., bosons

2
© bno , de
For 1D it leads to: h2 ~ .
d mC(TC)z = ono;

I.LA. and B.L. Altshuler , unpublished (2008)



Estimate for the transition temperature for general case
1) Start with T=0;

2) Identify elementary (one particle) excitations and prove that they
are localized.

3) Consider a one particle excitation at finite T and the possible paths
of its decays:

¢ (Tc) "~ U(Te)N1(Te)

Interaction
matrix element

# of possible decay
processes of an excitations
allowed by interaction
Hamiltonian;

Energy mismatch




Weakly interacting bosons in
one dimension

L 2 42 .
E:/ dz |11 ( 0% | V(a:)) )+ ngl/;“f;@
0 i l
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Details: Seminar
December 28







Phase diagram

P
gn
1 Crossover????
No finite T phase transition
in 1D L
=
See e.g. >
K < 1; superﬂuid Altman, Kafri, Polkovnikov, G.Refael, PRL,
T =0 100, 170402 (2008); 93,150402 (2004).

k > 1; 1nsulator  G.m. Falco, T. Nattermann, & V.L. Pokrovsky,
PRB,80, 104515 (2009) 2??2.



Finite temperature
k=E / ng phase transition in 1D

. Insulator K (t)

gm I.A., Altshuler, Shlyapnikov [ = T / n g
7= <K arXiv:0910.434; Nature Physics (2010)



Disordered interacting bosons in two dimensions

Fluid

Temperature

.




Conclusions:

Existence of the many-body mobility
threshold 1s established.

The many body metal-insulator transition 1s
not a thermodynamic phase transition.

It 1s associated with the vanishing of the
Langevine forces rather the divergences in
energy landscape (like 1n classical glass)

Only phase transition possible in one
dimension (for local Hamiltonians)



