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SPIN LATTICES

A

Spins on a lattice in 2D at zero temperature:

Parent Hamiltonian (local)

Many-body state: |Ψ〉

0| |H EΨ〉 = Ψ〉

Reduced state in region A:

[ ]tr | |Aρ = Ψ〉〈Ψ



( )A AS Nρ ∂∼

Area law: (Sredniky 93):

# degrees of freedom # particles at boundary

AH
A eρ −=

Entanglement spectrum: (Li and Haldane, 2008; Peschel, Kitaev and Preskill):

( )AHσ where

The low energy sector has the same structure as that for a lower dimensional 
theory (edge states)

THE (REDUCED) STATE OF THE BULK CAN BE DESCRIBED BY A LOWER
DIMENSIONAL THEORY

THAT THEORY IS SOMEHOW RELATED TO THE BOUNDARY OF THE REGION

A

SPIN LATTICES

≺



PROJECTED ENTANGLED-PAIR STATES

(Verstraete and IC, 2004) 

niAαβγδ

PEPS give a natural playground to investigate this subject

| NH ⊗Ψ〉∈

|Ψ〉



PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

IC, Poilblanc, Schuch, and Verstraete, PRB 83, 245134 (2011)

A



PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

A

The theory corresponds to the auxiliary particles living in the boundary

Isommetry between the spins in the bulk and the auxiliary ones in the boundary

†
A AU Uσ ρ∂ =

isommetry

- It „compresses“ the degrees of freedom
- Conserves the spectrum
- Allows to determine expectation values

It defines a BOUNDARY HAMILTONIAN

AH
A eσ ∂−
∂ = - Has the same entanglement spectrum

- It can be easily determined (exactly or approximately)
( ) ( )A AH Hσ σ∂ =

IC, Poilblanc, Schuch, and Verstraete, PRB 83, 245134 (2011)



What can we say starting from the boundary Hamiltonian? 
(beyond the entanglement spectrum)

Is the Hamiltonian local?

What are its symmetries, and how are they related to those of H?

How do topological properties manifest themselves?

What happens in quantum phase transitions?

How general are those predictions?

PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

A

IC, Poilblanc, Schuch, and Verstraete, PRB 83, 245134 (2011)

Other approaches: Qi, Katsura, and Ludwig, 2012, Dubail, Read, and Rezayi, 2012



Locality:

Results:

AH
A eσ ∂−
∂ =

- For gapped systems, it is local
- For critical systems, it becomes non-local

Symmetries: The boundary Hamiltonian inherits the symmetries

| |gi
gu e θΨ〉 = Ψ〉 ⇒ †

g A g AU H U H∂ ∂=

PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

IC, Poilblanc, Schuch, and Verstraete, PRB 83, 245134 (2011)



-Take a problem with su(2) symmetry and such that the boundary
particles have semi-integer reps (eg, spin ½)

- The boundary Hamiltonian is (close to) Heisenberg.

Quantum phase transitions:

- One needs to express the boundary density operator as a MPO
- Thermal states of local Hamiltonians can be (efficiently) written as MPO
- For gapped system, the boundary density operator is such a thermal sate

Entanglement spectrum corresponds to CFT theories:

-They are reflected in the boundary Hamiltonian

Contraction of PEPS:

PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

Implications:

AH
A eσ ∂−
∂ =

IC, Poilblanc, Schuch, and Verstraete, PRB 83, 245134 (2011)



This talk: Gapped topological phases in 2D

PROJECTED ENTANGLED-PAIR STATES
BULK-BOUNDARY CORRESPONDENCE

Schuch, Poilblanc, IC, Perez-Garcia, arXiv:1210.5601

A

Toric code (Kitaev)
RVB states
Phase transitions

EXAMPLESPROPERTIES

Boundary state
Boundary Hamiltonian



Results:

- In general, the boundary operator is block diagonal
- The projector,   , in each subspace is higly non-local

The boundary theory develops an extra symmetry

BOUNDARY THEORY
TOPOLOGICAL PHASES

†
A g A gU Uσ σ∂ ∂=

1 2 ...A A Aσ σ σ∂ ∂ ∂= ⊕ ⊕

- is universal (only depends on the boundary conditions):

The boundary Hamiltonian splits

topo non-universal
A A AH H H∂ ∂ ∂= +

topo
AH∂

topo
A i iH c P∂ = ⊕

- is local and depends on the details of the state
(but not on the boundary conditions)

non-universal
AH∂

Phase transition

- becomes non-local
- It can eventually compensate the universal part

non-universal
AH∂

topo
AH∂

iP



Setup:

Cylinder or Torus

BOUNDARY THEORY
TOPOLOGICAL PHASES

A

A

boundary condition A∂
2A∂

1A∂

1 2A Aσ∂ ∂
1 1 2

trA A A AXσ σ∂ ∂ ∂ ∂⎡ ⎤= ⎣ ⎦

vN

hN →∞



Ground state of:

BOUNDARY THEORY
TORIC CODE

p v
p v

H H H= − −∑ ∑
Take one of the four ground states
(the other can be easily obtained from that)

Auxiliary particles: qubits (D=2)



BOUNDARY THEORY
TORIC CODE

A
2A∂

1A∂
1 2A Aσ∂ ∂

Symmetry:

Projectors: ( )1
2 1 vN

eP Z ⊗= +

( )1
2 1 vN

oP Z ⊗= −

1 2 1 2

v v v vN N N N
A A A AZ Z Z Zσ σ⊗ ⊗ ⊗ ⊗
∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎣ ⎦ ⎣ ⎦

Boundary state:

1 2A A e e o oP P P Pσ∂ ∂ = ⊗ + ⊗

even parity

odd parity

-Total even parity
- Non-local



BOUNDARY THEORY
TORIC CODE

A
2A∂

1A∂
1 2A Aσ∂ ∂

Symmetry:

Projectors: ( )1
2 1 vN

eP Z ⊗= +

( )1
2 1 vN

oP Z ⊗= −

1 2 1 2

v v v vN N N N
A A A AZ Z Z Zσ σ⊗ ⊗ ⊗ ⊗
∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎣ ⎦ ⎣ ⎦

Boundary state:

1 2A A e e o oP P P Pσ∂ ∂ = ⊗ + ⊗

even parity

odd parity

-Total even parity
- Non-local

A

1 1 2
trA A A A e e o oX p P p Pσ σ∂ ∂ ∂ ∂⎡ ⎤= = +⎣ ⎦

(note top EE requires )0ep =



BOUNDARY THEORY
TORIC CODE

Projectors: ( )1
2 1 vN

eP Z ⊗= +

( )1
2 1 vN

oP Z ⊗= −

even parity

odd parity

A 1 1 2
trA A A A e e o oX p P p Pσ σ∂ ∂ ∂ ∂⎡ ⎤= = +⎣ ⎦

Symmetry: v vN N
A AZ Zσ σ⊗ ⊗
∂ ∂=

Boundary Hamiltonian: topo log( ) log( )A A e e o oH H p P p P∂ ∂= = − −

- The values of depend on the chosen boundaries
- It is highly non-local (like the projectors)
- There is no non-universal part (it is a fixed point of the RG flow)

,e op



Deformed Kitaev model:

BOUNDARY THEORY
PHASE TRANSITIONS

Top 
phase

Deformed Kitav model (Castelnovo and Chamon, PRL 2008)

p v
p v

H H H= − −∑ ∑

( ) ( ) ( )p v
p v

H H Hλ λ λ= − −∑ ∑
1 4 1 4( ) (| 0 0 | |1 1 |) (| 0 0 | |1 1|)x xH Hλ λ λ− ⊗ − ⊗= 〉〈 + 〉〈 〉〈 + 〉〈

Kitaev:

λ0 1cλ

Non top
phase

The ground state is a PEPS (with D=2) for all values of λ

trivial 
state



Deformed Kitaev model:

BOUNDARY THEORY
PHASE TRANSITIONS

Top 
phase

1. Fix the boundary condition (determines ).

2. Determine the boundary state:

3. Compute the boundary Hamiltonian:

4. Substract the universal topo Hamiltonian:

5. Determine the „interaction lenght of the non-universal part“

0 1cλ

Non top
phaseA

Aσ∂

( )logA AH σ∂ ∂= −

topo log( ) log( )A e e o oH p P p P∂ = − −

topo non-universal
A A AH H H∂ ∂ ∂= +Conjecture:

where is the one calculated for λ=1 (toric code)

Calculation:

,e op

non-universal topo
A A AH H H∂ ∂ ∂= −



Deformed Kitaev model:

BOUNDARY THEORY
PHASE TRANSITIONS

Top 
phase

0 1cλ

Non top
phaseA

non-universal topo
A A AH H H∂ ∂ ∂= −

Lattice: 12∞×

Topological pase:
Interaction lenght decreases exponentially

Non-Topological pase:
Long-range interactions



RVB states in a Kagome lattice:

BOUNDARY THEORY
PHASE TRANSITIONS

niAαβγδ

| 0,1 |1,0〉− 〉

VBS

| |RVBS VBS〉 = 〉∑

We can find a local parent Hamiltonian, H.

1 1 1 1
1222 2122 2202 2220 1A A A A= = − = − =

0 0 0 0
0222 2022 2212 2221 1A A A A= = − = − =

We can find a deformation: | ( )θ⇒ Ψ 〉

| RVB〉 | Toric Code〉

( )niAαβγδ θ

0 1

Topological
phase



RVB states in a Kagome lattice:

BOUNDARY THEORY
PHASE TRANSITIONS

We calculate the non-universal part.

| RVB〉 | Toric Code〉
0 1

Topological
phase

non-universal topo
A A AH H H∂ ∂ ∂= −

It is local: no phase transition



How general are those results?

BOUNDARY THEORY

Conclusions are based on examples

Believe that is generic for PEPS

PEPS describe gapped phases

- What about chiral topological theories?

2N

physically
relevant



Parent Hamiltonian for Laughlin spin state in a lattice

Anne Nielsen, IC, German Sierra, arXiv 1201.3096

Nielsen, IC, Sierra, J. Stat. Mech. (2011), P11014 for SU(2)  WZW theory

Build iMPS with correlators of a CFT 
Sierra and IC, PRB 81, 104431 (2010)

Use null vectors of the CFT to build a parent Hamiltonian for a spin system

| 0i
aQ Ψ〉 = †

,
| 0i i

a a
i a

Q Q Ψ〉 =∑

H

k

Investigate topological properties by EE and ES

(proof that for two-leg ladder, EH is invariant under Yangian trafo)

BOUNDARY THEORY
CHIRAL TOPOLOGICAL STATES



GAPPED PHASES AT T=0 in 1-dimension
Schuch, Perez-Garcia, Cirac, Phys. Rev. B 84, 165139 (2011), arxiv:1010.3732
Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011), arxiv:1008.3745



Phases:

Hamiltonians States |Ψ〉H

1H 1Ψ2H

2Ψ

1Ψ 2Ψ are in the same phase if they can be smoothly connectedand

2. GAPPED PHASES
2.1. CLASSIFICATION



Phases:

Hamiltonians States |Ψ〉H

1H 1Ψ2H

2Ψ

1H 2H are gapped (above the ground subspace), then is gapped( )H γand

2. GAPPED PHASES
2.1. CLASSIFICATION



Phases:

States |Ψ〉

along the boundaries, there are quantum phase transitions

2. GAPPED PHASES
2.1. CLASSIFICATION



Symmetries:

States |Ψ〉

We may impose that the path respects the symmetries

†
1,2 1,2

N N
g gH u H u⊗ ⊗= 1,2 1,2| |N

gu⊗Ψ 〉 = Ψ 〉

( )H γ

2. GAPPED PHASES
2.1. CLASSIFICATION



1 2,... 1 2,
1 2tr ... Ni i ii i

Nc A A A⎡ ⎤= ⎣ ⎦
1i Ni

iA
D D

d
i

2. GAPPED PHASES IN 1D
2.2. MPS

Definition:



Parent Hamiltonians:

+ conditions

( )n
n

H P=∑
( ) | 0nP Ψ〉 =

Unique, gapped, degenerate

iA
αβ

D D

d

2. GAPPED PHASES IN 1D
2.2. MPS



Symmetries:

| |giN
gu e⊗ Ψ〉 = Ψ〉φ

g G∈

gu (linear) representation of G

STANDARD MPS

gu

= gv †
gv

Symmetries in the state reflect themselves in symmetries of the tensor

gv (projective) unitary representations of G

D. Perez-Garcia, M. Sanz, C. E. Gonzalez-Guillen, M. M.
Wolf, and J. I. Cirac, New J. Phys. 12, 025010 (2010),

2. GAPPED PHASES IN 1D
2.2. MPS



Symmetries:

| |giN
gu e⊗ Ψ〉 = Ψ〉φ

g G∈

gv (projective) unitary representations of Ggu (linear) representation of G

STANDARD MPS

gu

= gv †
gv

|N
gu⊗ Ψ〉

gu gu gu gu gu gu

=
gv gv gv gv gv gv†

gv †
gv †

gv †
gv †

gv †
gv

D. Perez-Garcia, M. Sanz, C. E. Gonzalez-Guillen, M. M.
Wolf, and J. I. Cirac, New J. Phys. 12, 025010 (2010),

2. GAPPED PHASES IN 1D
2.2. MPS



No symmetries:

The phases are defined in terms of the ground state degeneracy

States |Ψ〉

In particular, every ground state of a non-degenerate Hamiltonian
is in the same phase as the trivial product state.

2. GAPPED PHASES IN 1D
2.3. CLASSIFICATION



Symmetries:

Non-degenerate ground state: 
The phases are defined in terms of the 2nd cohmology classes of
the projective representations of the symmetry group G.

States |Ψ〉

Degenerate ground state: 
The phases are defined in terms of the 2nd cohmology classes of
the induced projective representations of the symmetry group G.

2. GAPPED PHASES IN 1D
2.3. CLASSIFICATION



Symmetries:

= gv †
gv

gu

g h ghu u u=Linear representation: ( , )i g h
g h ghv v e v= ωProjective representation:

gi
g gv v e→ χ (is defined up to a phase)

( , )g hω is defined up to an eq. relation

The equivalence classes are the cohomology classes

The cohomology class cannot be changed while keeping analiticity:

The cohomology class can be (in principle) measured

2. GAPPED PHASES IN 1D
2.3. CLASSIFICATION



An order parameter for gapped phases in 1D
Haegeman, Perez-Garcia, IC, Schuch; Phys. Rev. Lett. 109, 050402 (2012) 

31 2 1 2 1
13| ( 1 ) (1 ) |NN N N N N

g g h ho u u u u⊗⊗ ⊗ ⊗ ⊗ ⊗= 〈Ψ ⊗ ⊗ ⊗ ⊗ Ψ〉F

( )2
1 1cos( ) sin( )n n n n

n n
H S S S Sθ θ+ += − ⋅ + ⋅∑ ∑

JG JG JG JJG

2. GAPPED PHASES
2.4. ORDER PARAMETER



PEPS:

2. GAPPED PHASES
2.5. HIGHER DIMENSIONS

Symmetries:

Boundary-bulk correspondence:

+ conditions
( )n

n
H P=∑
Unique, gapped, degenerate

Parent Hamiltonians:

gu
= gv †

gv

gw

†
gw

Topology:

= gv †
gv

gw

†
gw

Schuch, Perez-Garcia, IC (in progress)



2N

physically
relevant

Thermal equilibrium and local interaction spins can be efficiently described by PEPS

Numerical algorithms
New perspective

HERE:

CONCLUSION:

SUMMARY and CONCLUSIONS

Area law, entanglement spectrum: bulk-boundary correspondence
Topological theories:

topo non-universal
A A AH H H∂ ∂ ∂= +

Classification of gapped phases in 1D
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