Quantum memories: design and applications

Condensed Matter Seminar, TECHNION, December 4th, 2012

- Decoherence: external noise, coupling to environment, etc
- Goal: memory time as long as possible

Applications:

- Cryptography
- Quantum repeaters
- Quantum money

QUANTUM MEMORIES APPROACHES

1. ISOLATION + DECOUPLING

TRAPPED IONS

NV-CENTERS

- Memory times of the order of hours
- Require complex set-ups

- Memory times of the order seconds
- Relative simple set-ups

2. FAULT-TOLERANT QUANTUM ERROR CORRECTION

- Quantum computation: Identity operator
- General local (few particle) errors:
 - Hamiltonians (eg, errors in gates)
 - Interaction with environment (eg, depolarizing noise)
- Error threshold:

$$P_{\text{error/step}} \leq P_{\text{threshold}} \sim 10^{-4}$$

• Memory time:

$$T \sim e^{kN}$$

3. SELF-PROTECTING QUANTUM MEMORIES

- Original idea: Kitaev
- Like classical memories (eg Hard disk):

SELF-PROTECTING QUANTUM MEMORIES

• Which errors can tolerate?

- Hamiltonian perturbations (local)
- Interaction with environment (eg, depolarizing noise)

• Memory time? $T \sim f(N)$

- 1. Depolarizing noise
- 2. Hamiltonian perturbations
- 3. Applications
- 4. Quantum simulations of HEP

1. Depolarizing noise

F. Pastawski, A. Kay, N. Schuch, JIC, Phys Rev. Lett.**103**, 080501 (2009) F. Pastawski, L.Clemente, JIC, Phys.Rev. A **83**, 012304 (2011)

1. DEPOLARIZING NOISE

 $|\Psi\rangle = a |0\rangle + b |1\rangle$

Markovian Depolarizing Noise:

$$\dot{\rho} = -i[H_{\text{protecting}}, \rho] + \Gamma \sum_{n} L_{n}(\rho)$$

$$\int_{n}^{n} L_{n}(\rho) = \frac{1}{2} \operatorname{tr}_{n}(\rho) - \rho$$
depolarization rate

MPQ

1.1. NO PROTECTING HAMILTONIAN

 $\rho(t) = \mathbf{E}_t^{\otimes N}(\rho)$

• After $T = \ln 3 / \Gamma$, E_T is an entanglement breaking channel

Quantum information cannot withstand such channel

The memory time is independent of N

1.2. PROTECTING HAMILTONIAN

$$\dot{\rho} = -i[H_{\text{protecting}}, \rho] + \Gamma \sum_{n} L_{n}(\rho)$$

• For ANY Hamiltonian,
$$\frac{dI(t)}{dt} \le -\Gamma I(t)$$

 $I = N - S(\rho)$

(information content)

• After a time $T = \ln(2N) / \Gamma$, the information content $I \le 1/2$

• If $I \leq 1/2$, no information can be stored

The memory time is at most $\sim \log(N)$

the bound can be reached!

1.3. CONCLUSIONS

$$\dot{\rho} = -i[H_{\text{protecting}}, \rho] + \Gamma \sum_{n} L_{n}(\rho)$$

• A protecting Hamiltonian helps.

• The time only scales logarithmically

- We need to get rid of entropy dissipation
- For other noises, it may be better

1.4. DISSIPATIVE PROTECTION

Idea: replace protecting Hamiltonian by protecting dissipation

1.4. DISSIPATIVE PROTECTION

$$\dot{\rho} = \mathbf{L}^{\text{protecting}}(\rho) + \Gamma \sum_{n} L_{n}(\rho)$$

- Gets rid of entropy
- Corrects all local errors
- Can the dissipation be local?

For the moment, in 4D (local)

2. Hamiltonian noise

F. Pastawski, A. Kay, N. Schuch, JIC, QIC**10**, 0580-0618 (2010) L. Mazza, M. Rizzi, M. Lukin, JIC (in preparation)

2. HAMILTONIAN NOISE

 $|\Psi\rangle = a \,|0\rangle + b \,|1\rangle$

Small perturbation

$$|\dot{\Psi}\rangle = -i(H_{\text{protecting}} + \varepsilon V) |\Psi\rangle$$

 \uparrow
local perturbation $V = \sum_{n} V_{n}$

Is the qubit protected for all local perturbations?

2.1. MAIN IDEA

- H has a degenerate ground state with a gap

Local perturbations mildly lift the degeneracy

2.2. ADVERSARY HAMILTONIAN

Find a particular perturbation

$$|\dot{\Psi}\rangle = -i(H_{\text{protecting}} + \varepsilon V) |\Psi\rangle$$

Prove that for that particular one, the information cannot be recovered

It cannot protect against ALL local perturbations

• Simple perturbation:

$$H = U^{\dagger} H_{\text{protecting}} U \qquad \qquad U = e^{-i\varepsilon \sum_{n} h_{n}}$$

$$\varepsilon V = U^{\dagger} H_{\text{protecting}} U - H_{\text{protecting}} = \varepsilon \sum_{n} V_{n}$$

 $|\langle 0 | 0' \rangle| \le e^{-N}$

A decoding operation (error correction) at the end is required

 $\rho = \mathbf{E}_2 \bullet \mathbf{D}_T \bullet \mathbf{E}_1(\Psi)$

2. HAMILTONIAN NOISE

2.4. MODELS:

 Kitaev's toric code (2D): Bacon's compass model (3D):

 $T \sim \log(N)$

- Including randomness: $T \sim N$
- Including time-dependent perturbations: $T \sim 1$

See also

- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Jour. Math. Phys. 43, 4452 (2002).
- R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki, arXiv:0811.0033 (2008).
- S. Chesi, D. Loss, S. Bravyi, and B. M. Terhal, arXiv:0907.2807 (2009).
- S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal, Phys. Rev. Lett. 101, 070503 (2008).

2.5. BEYOND QECC:

- Not necessarily an ECC
- We should find the optimal decoding operation

2.6. RESTRICTED ERRORS: MAJORANA FERMIONS

- Hamiltonian perturbations conserve parity (SSR)
- Problem is Gaussian: Can be solved

2.6. RESTRICTED ERRORS: MAJORANA FERMIONS

Average with respect to different noise realizations

2. HAMILTONIAN NOISE

2.6. RESTRICTED ERRORS: MAJORANA FERMIONS

Memory time is compatible with an exponential scaling

• At finite temperature, the time saturates

3. Applications

F. Pastawski, N. Yao, L. Yang, M.D. Lukin, JIC, arXiv:1112.5456

• NV Centers:

- Room temperature
- No vacuum, etc
- Magnetic shielding
- Many qubits
- Product sate:

 $|\alpha\rangle|\beta\rangle$...

• NV Centers:

- Room temperature
- No vacuum, etc
- Magnetic shielding
- Many qubits

Product sate:

 $|\alpha\rangle|\beta\rangle$...

Quantum money

Protocols: Wiesner 1969 (1983), Mosca et al, 2007, with QC Gavinsky 2011, with CC

NO SECURITY PROOF SO FAR

• Quantum tickets:

• Classically verifiable tickets:

3.1. SECURITY:

Under realistic conditions, not all the qubits will give the correct outcome

• If the tolerance is too high, one could have made many copies

• The user may learn by trying to verify his ticket many times

QUESTIONS:

- What is the minimum tolerance, such that the protocols are secure?
- How many times can a ticket be verified?

3.2. Q-TICKETS: Protocol

Each q-ticket has a: - Classical serial number
 - N qubits, in a product state, randomly chosen


```
A quantum bank note, containing a secret set of polarized pho-
tons, cannot be copied by counterfeiters, who would disturb the
photons by attempting to measure them.
```

 $|0\rangle, |1\rangle, |+\rangle, |-\rangle, |+i\rangle, |-i\rangle$

• The verifies measures a random subset of qubits with:

- acceptance $F > F_{tol}$
- no acceptance $F \leq F_{tol}$

3.2. Q-TICKETS: Security

• Soundness: honest owners can enter the train.

$$P_{\text{accept}}(F) \ge 1 - e^{-ND(F || F_{tol})}$$

Safety: no double success.

 $P_{2 \text{ are accepted}} \le e^{-ND(2F_{tol} - 1 \| 2/3)}$ $F_{tol} > 5/6$

• Multipe verifications:
$$P_{2 \text{ are accepted}}(v) \leq {\binom{v}{2}} e^{-ND(2F_{\text{tol}}-1||2/3)}$$

• Proof:

- Assume general forging TPCP map.
- Transform discrete problem to continuous via 3-designs.
- Extend results on perfect cloning.
- Chernoff bounds for non iid sources.

3.3. cv-TICKETS: Protocol

- Each q-ticket has a: Classical serial number
 - N pairs of qubits, in a product state, randomly chosen

$$|0+\rangle, |0-\rangle, |1+\rangle, |1-\rangle, |+0\rangle, |-0\rangle, |+1\rangle, |-1\rangle$$

- Verification takes place remotely, with classical communication.
- Verifier asks random questions (XX or ZZ) which are non-informative.

Gavinsky, D. (2011). Quantum Money with Classical Verification. arXiv:1109.0372.

3.3. cv-TICKETS: Security

- Soundness: honest owners can pass the test.
- Safety: no double success, no simultaneous verification with many verifiers.

• Proof:

- Same as before.
- Extension of quantum retrieval games (Gavinsky)
- Chernoff/Hoeffding and Impagliazzo/Kabanets bounds.

4. Quantum simulations

Zohar, IC, Reznik, PRL 109, 125302 (2012) Zohar, IC, Reznik, arXiv:1208.4299

QUANTUM SIMULATION

PHYSICAL SYSTEM

Phenomenological Hamiltonian

$$H = \dots$$

QUANTUM SIMULATOR

Physical Hamiltonian

$$H = \dots$$

QUANTUM SIMULATION ATOMS IN OPTICAL LATTICES

Cold atoms are described by simple field theories:

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + \mathbf{V}(\mathbf{r}) \right) \Psi_{\sigma} + u_{\sigma_i} \int \Psi_{\sigma_1}^{\dagger} \Psi_{\sigma_2}^{\dagger} \Psi_{\sigma_3} \Psi_{\sigma_4}$$

One can also use external laser fields

Atoms in optical lattices: Low energies (temperatures):

Bose-Hubbard model

$$H = -t \sum_{n} \left(a_{n}^{\dagger} a_{n+1} + h.c \right) + U \sum_{n} a_{n}^{\dagger 2} a_{n}^{2}$$

QUANTUM SIMULATION ATOMS IN OPTICAL LATTICES

Hubbard model: Mott insulator – superfluid tansition

Bose-Hubbard model

$$H = -t \sum_{n} (a_{n}^{\dagger} a_{n+1} + h.c) + U \sum_{n} a_{n}^{\dagger 2} a_{n}^{2}$$

Experimentally observed

Bosons/Fermions:

$$H = -\sum_{\substack{\langle n,m \rangle \\ \sigma,\sigma'}} \left(t_{\sigma,\sigma'} a_{n,\sigma}^{\dagger} a_{m,\sigma'} + h.c \right) + \sum_{\substack{n \\ \sigma,\sigma'}} U_{\sigma,\sigma'} a_{n,\sigma}^{\dagger} a_{n,\sigma'}^{\dagger} a_{n,\sigma'} a_{n,\sigma$$

■ Spins:

$$H = -\sum_{\substack{\langle n,m \rangle \\ \sigma,\sigma'}} \left(J_x S_n^x S_m^x + J_y S_n^y S_m^y + J_z S_n^z S_m^z \right) + \sum_{\substack{n \\ \sigma,\sigma'}} B_n S_n^z$$

HIGH ENERGY PHYSICS?

Fermions + Gauge Fields

$$L = \int \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi - eQ \int A_{\mu}\overline{\Psi}\gamma^{\mu}\Psi - \frac{1}{4}\int F_{\mu\nu}F^{\mu\nu} + \dots$$

We need bosonic and fermionic atoms We need interactions among themselves

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma'}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma'} \Phi_{\sigma'} \Psi_{\sigma'} \Psi_{\sigma$$

Relativistic

Matter + Gauge fields + Relativistic

$$\frac{H_{\Phi}}{\hbar} = \int dx \Big(v_{\mathbf{s}} \bar{\Psi}_n \gamma_1 p \Psi_n + gm \Phi \bar{\Psi}_n \Psi_n + \frac{m^2}{2} \Phi^2 \Big).$$

(Yukawa theory with infinite mass fields)

IC, Maraner, and Pachos, PRL 105, 1904 '03 (2010)

Higher dimension + Gauss law:

- Boson fields are replaced by 1 atom with 2S+1 internal levels
- Gauss law is enforced by an energy penalty

Full cQED (Kogut Susskind) Hamiltonian

Zohar, IC, Reznik, PRL 109, 125302 (2012) Zohar, IC, Reznik, arXiv:1208.4299

FERMIONS

$$\psi_{\mathbf{n}} = \begin{pmatrix} c_{\mathbf{n}} \\ d_{\mathbf{n}} \end{pmatrix} \qquad Q_{\mathbf{n}} = \psi_{\mathbf{n}}^{\dagger} \psi_{\mathbf{n}} - 1$$

$$H_p^f = i\eta \sum_{\mathbf{n},k} \left(\psi_{\mathbf{n}}^{\dagger} \sigma_k \psi_{\mathbf{n}+\hat{\mathbf{k}}} - H.C. \right) + M \sum_{\mathbf{n}} \psi_{\mathbf{n}}^{\dagger} \sigma_z \psi_{\mathbf{n}}$$

BOSONS (spins)

$$H_p^b = \sum_{\mathbf{n},k} \left(\mu \left(L_{z,\mathbf{n}}^k \right)^2 + 2\beta L_{x,\mathbf{n}}^k \right) + \Omega \sum_{\langle i,j \rangle} \left(L_{x,i} L_{x,j} + L_{y,i} L_{y,j} \right)$$

GAUSS LAW

$$G_{\mathbf{n}} = L_{z,\mathbf{n}}^{1} + L_{z,\mathbf{n}}^{2} + L_{z,\mathbf{n-\hat{1}}}^{1} + L_{z,\mathbf{n-\hat{2}}}^{2} - (-1)^{n_{1}+n_{2}} Q_{\mathbf{n}}$$
$$H_{G} = \lambda \sum_{\mathbf{n}} G_{\mathbf{n}}^{2}$$

ROBUSTNESS

F. PASTAWSKI (MPQ)

N. Schuch	(Aachen)
A. Kay	(Cambridge)
L. Clemente	(MPQ)
L. MAZZA	(MPQ)
M. Rizzi	(MPQ)

N. Yao L. Jiang M. LUKIN P. Maurer G. Kuksko G. Latta

(Harvard) (CALTECH) (Harvard)

EU Support: QUEVADIS (dissipation) AQUTE (rest)

