

SEMINAR

סמינר

New opportunities in quantum simulation with trapped ions

Dr. Tom Manovitz

(Student of Prof. Roee Ozeri) Physics department Weizmann Institute of Science Rehovot

Abstract

Engineered, highly controlled quantum machines can be used to simulate the behavior of quantum many-body systems, potentially providing insight into a variety of complex quantum phenomena. Of these systems, those in which time-reversal symmetry is broken present a particularly interesting class of emergent behaviors (e.g. the quantum Hall effect) and are an important target for future quantum simulators. One-dimensional arrays of ions held in linear RF traps are one of the most (if not the most) highly controlled quantum platforms available, making them excellent and accomplished quantum simulators; however, the range of models that are typically simulated using these platforms is limited. I will discuss ways of significantly broadening the scope of ion quantum simulators, allowing them to transcend their natural 1d geometry and to incorporate time-reversal symmetry breaking features, including all salient ingredients for observing some interesting many body phenomena. I will also present our recent realizations of such quantum simulations, including simulation of interacting excitations in a frustrated, time-reversal broken system and measurement of persistent current in the ground state.

ההרצאה תתקיים ביום רביעי ,ה-6.10.21 בשעה 12:30 באודיטוריום המכון למצב מוצק, קומת כניסה The lecture will take place on Wednesday, 6.10.21 at 12:30 at the Solid State Institute auditorium, entrance floor

Host: Associate Professor Yoav Sagi