

SEMINAR

Degenerate Raman sideband cooling of 40K atoms

סמינר

Elad Zohar

Department of Physics and The Solid State Institute, Technion

Abstract

Ultracold atoms experiments require several cooling stages before the gas can be used for the intended purpose. Sub-recoil laser cooling techniques are relatively fast, incurring small losses and leaving the atoms at a specific internal state. In this lecture, I will present the first implementation with fermionic potassium 40 atoms of a technique called degenerate Raman sideband cooling. In this technique, Raman transitions, driven by a confining 3D lattice, remove vibrational energy. Optical pumping light closes the cooling cycle. In the experiment, we achieve temperatures as low as 1uK while spin polarizing the sample. I will present the experimental apparatus, including the laser systems built for this purpose. Finally, I will discuss the dependence of the cooling scheme on various parameters, such as the Raman detuning, duration, and the applied magnetic field.

ההרצאה תתקיים ביום רביעי ,ה-27.7.22 בשעה 12:30 באודיטוריום המכון למצב מוצק, קומת כניסה The lecture will take place on Wednesday, 27.7.22 at 12:30 at the Solid State Institute auditorium, entrance floor

https://technion.zoom.us/j/94516920602

M.Sc. Student of Associate Professor Yoav Sagi