

TECHNION Israel Institute of Technology

הטכניון מכון מכנולוגי לישראל

SPECIAL SEMINAR

סמינר מיוחד

High Coherence Electron Pulses for Ultrafast Transmission Electron Microscopy

Dr. Armin Feist IV. Physical Institute – Solids and Nanostructures, University of Göttingen, Göttingen, Germany

Abstract

Ultrafast transmission electron microscopy (UTEM) combines the versatile nanoscale imaging, diffraction and spectroscopy available in electron microscopes with femtosecond temporal resolution achieved by a laser-pump/electron-probe scheme [1]. However, to make full use of the capabilities of state-of-the-art TEM, highly coherent electron pulses are required, demanding for novel photocathode concepts.

Here, I will describe the implementation of an advanced UTEM instrument utilizing laser-triggered field emitters and present first applications harnessing its superior electron beam coherence.

Specifically, the Göttingen UTEM employs electron pulses of excellent spatio-temporal properties (down to 0.8-nm focal spot size, 200-fs pulse duration and 0.6-eV spectral bandwidth), generated by localized linear photoemission from a Schottky-type field emitter tip [2].

I will give a brief overview of current experiments in ultrafast imaging and local diffractive probing of condensed matter systems. These include the local diffractive probing of strain dynamics in a single crystalline graphite membrane [3], the laser-induced dynamics of nanopatterned magnetic permalloy thin films [4], and the time-resolved mapping of the charge-density wave phase transition in the correlated material 1T-TaS₂.

In a further line of applications, we utilize the interaction of fast electrons with intense optical near-fields to establish quantum coherent control of free electron pulses by light [5]. As a particular example, I will describe the three-dimensional optical phase-shaping of electron beams, with applications for generating atto second electron pulse trains [6] and coherent electron beam splitters. **Reference:**

[1] A.H. Zewail, Science 328, 187 (2010).

- [2] A. Feist et al., Ultramicroscopy 176, 63 (2017).
- [3] A. Feist *et al.*, *Struct. Dyn.* **5**, 14302 (2018).

[4] N. Rubiano da Silva et al., Phys. Rev. X 8, 031052 (2018).

[5] A. Feist et al., Nature 521, 200-203 (2015).

[6] K.E. Priebe et al., Nat. Photonics 11, 793-797 (2017).

ההרצאה תתקיים ביום חמישי ,ה-12.12.19 בשעה 10:00 באודיטוריום המכון למצב מוצק, קומת כניסה The lecture will take place on Thursday, 12.12.19 at 10:00 at the Solid State Institute auditorium, entrance floor

Host: Dr. Ido Kaminer